The Biomechanics of Head Trauma and the Development of the Modern Helmet

How Far Have We Really Come?

by James A. Newman

Historically, the basic engineering concepts of energy absorption and load distribution have been applied to helmet design, but little in the way of the biomechanics of head injury has been utilized. The lack of progress appears to stem largely from adherence to old fashioned test methods, which do not properly reflect the real life circumstances of accidents. For instance, the biofidelity of the head form, the nature of the failure criteria, as well as the manner by which the movement of a test helmet is constrained, are all issues that bear on the application of biomechanical fundamentals.

Let’s examine helmet testing from this viewpoint and see if what’s known about the biomechanics of head injury doesn’t suggest improvements.

50 years ago, Juan Fangio of Argentina was the World Champion of Grand Prix car racing. When he raced, he wore head protection that has been popularly described as a “pudding bowl.” (See Illustration 1.) Bill Lomas, the World Champion motorcyclist from the UK wore a similar helmet. Otto Graham, voted the Most Valued Player of the National Football League in the United States in 1955, wore a hard leather “hat” when he played. Bicyclists 50 years ago might have worn what could best be described as a leather hairnet, and the occasional ice hockey player may have worn a soft leather cap. Most other sporting endeavors showed little interest in protection of the participant’s head.

Until the British Standards Institute published the world’s first crash helmet standard in 1952 (BS 1855, 1952), what actually constituted a helmet was left pretty much to the discretion of the helmet producer. These official performance standards were the first real opportunity to invoke human tolerance considerations, i.e. biomechanics. Helmet standards now required some knowledge of human head injury, for how else could they stipulate a failure level? Henceforth, a helmet would be defined in terms of how it should function rather than how it was styled or manufactured.

Helmets of course have been around for thousands of years, and it is self-evident that their primary function was to reduce the likelihood of head injury in combat. However, the sports helmet as we know it today has its origins not in the medieval battlefield, but springs from the development of the motorcycle and the airplane. And our basic understanding of the biomechanics of head injury lies not in today’s sophisticated computer models but dates back to the pioneering work of physicians, physicists and engineers working in Europe and America.

At the outset, it is clear that an intuitive understanding of what a helmet should do preceded any clear understanding of head injury mechanisms. Thus, the basic principles have always been to provide a hard outer shell to ward off external forces and padding to help cushion the blow. That the shell distributed the applied force and thereby reduced localization of loading, and thus the propensity for skull fracture, may not have occurred to early inventors. That padding served to absorb impact energy thereby reducing the inertial loading on the head and therefore reduced acceleration-induced injuries was also not likely given much thought. Today, there is probably little disagreement that the fundamental objective of good helmet design is to distribute impact loading over as large an area of the head as possible and to reduce the total force on the wearer’s head as much as possible.

The main way by which biomechanics has influenced helmet design is not so much in our understanding of different injury mechanisms, but rather in a better appreciation of the biophysical characteristics of the head and the development of kinematic head injury assessment functions. This insight has provided better ways to test the impact capabilities of a helmet without first placing it on a human being and a means to judge how well one might expect it to work in actual use.

Head Injury Mechanisms

Not unlike the structural failure of any inanimate object, injuries to the head are nearly always caused by excessive movement of one part relative to another. Injury to the brain can occur if any part of it is distorted, stretched, or compressed, or if it is torn away from the interior of the skull. Blood vessels rupture if they are stretched too much. An impact to the head can cause the skull to deform and even if it does not fracture, the underlying brain tissue can be injured as it distorts under the influence of the deforming skull. Even if the skull does not bend significantly but the head as a whole is caused to move violently, distortion of the brain within the skull will occur. This typically leads to generalized diffuse injury such as concussion, and in the extreme, coma. A helmet, by absorbing some of the impact energy, reduces the amount of energy transferred to the head. It thereby can reduce the induced relative movement between parts of the head, and thus the probability and/or severity of head injury.

Early research didn’t focus too much on what was going on inside the head when it was struck but relied largely on observation of the overall response of the “victim”—by looking at how the head moved dynamically and trying to relate this to the type or severity of the resulting brain injury. This field of research became to be broadly known as the biomechanics of head trauma.
In the beginning, our understanding of the biomechanics of brain injury was, well, unclear. And to a great extent it remains that way. As Lombard and his coworkers put it in 1951, “There is a bit of confusion in the literature concerning the mechanisms of mechanical injury to the brain.” Thirty years later Goldsmith observed that; “The state of knowledge concerning trauma of the human head is so scant that the community cannot agree on new and improved criteria though it is generally admitted that present designations are not satisfactory.”

Beginning in the early 1940s, in what were the first of several attempts to try to relate external loading to brain injury, Gurdjian, Webster and Lissner at Wayne State University impacted living dogs’ heads. Not surprisingly, they observed that the harder the dogs were struck, the more likely or the more serious a head injury would be. In later experiments, they applied jets of air directly to an animal’s exposed brain. They noted a correlation between the force of the air and the duration of exposure to the blast and the severity of concussive effects. A few years later, Lissner and coworkers continued this line of enquiry with a different model. They dropped cadavers onto their heads from different heights onto a flat steel plate until they could produce a skull fracture. Not because they were interested in finding out what it would take to “produce a concussion,” because they were more interested in finding out what it would take to produce a concussion. In these experiments they monitored the intracranial pressure during impact as well as the cadaver head’s acceleration. By examining acceleration and relating it to those tests when a fracture occurred, they devised a crude relationship between the probability of concussion, the average head acceleration in Gs and the time duration of the impact. That this should relate to brain injury, particularly concussion, was imbedded in their hypothesis that nearly everyone who sustains a skull fracture sustains a concussion. An adequate description of the head response, i.e., its movement, was felt to be contained entirely within the linear acceleration-time history during the impact. By combining all this data, along with other estimates from accidental free falls, they developed what became and what is still referred to as the Wayne State Concussion Tolerance curve. This function attempted to relate the level of tolerable linear acceleration to how long that acceleration lasted.

One of the many problems with this approach is that most people who sustain a concussion, or many of the other kinds of brain injury, do so without having their skulls fractured. Another problem that followed and that has lingered for years was the idea that brain injury was caused by linear acceleration.

By 1953, the helmet industry was coming to grips with some of these biomechanical concepts as evidenced in the following text from an American football helmet patent (US2,634,415). Although something of an oversimplification, the inventors recognized that acceleration of the head can be injurious even if the skull does not fracture.

“A head jolt properly may be defined as a sudden and/or severe change in the direction in which the head is moving, or the velocity with which it is moving, or both. The avoidance of sharp and/or severe head jolts is of vital importance. The human brain ‘floats’ in the skull much as the yolk of an egg has floating suspension in its associated egg white. A sharp or severe jolt can rupture an egg yoke without fracturing the egg shell. Similarly, a sharp or severe jolt can cause fatal injury to a human brain without fracturing the skull which houses it, and often with only minor, if any evidence of injury at the outside of the head. There have been many such fatal injuries in the playing of football.”

Previously, on the “other side of the pond,” a research physicist in the Department of Surgery at Oxford University (Holbourn in 1943) had hypothesized that the predominant cause of brain injury was not linear acceleration at all but rather was due to rotation of the head. Holbourn maintained that you could disturb/distrort/disrupt the contents of the skull much more readily by rotating the head than by accelerating it linearly—the same way you could with say, a bowl of soup, if you spun the bowl rather than if you just pushed it across the table—keeping, of course, a lid on the bowl to more closely simulate a closed head so the “brains” don’t spill out.

Over 20 years later, researchers in the US, such as Gurdjian, Lissner, Patrick, Hodgson et al, continued to be stuck on the idea that linear acceleration was the most important mechanism. By the 70s, other US researchers, notably Ommaya and coworkers (Gennarelli et al, 1972) who had subjected live monkeys to linear and angular impact motions, had concluded that “no convincing evidence has to this date been presented which relates brain injury and concussion to translational (linear) motion of the head...”

Nowadays, it is generally acknowledged that deformation of the brain and associated injury might be understood only by knowing the full three dimensional history of the head’s motion following impact. Today, internal damage to the brain as a result of head impact is being studied with complex mathematical models that can actually predict the amount of deformation that occurs to the various parts of the brain tissue for different types of impact. Some investigators have even gone so far as to put mathematical helmets on mathematical heads to see what the mathematically predicted effects are. To do so, in addition to modeling the skull, its contents and the helmet’s geometric and physical properties, requires the complete characterization of the head motion in time and in all three dimensions including all linear and rotational components.

Helmet Development

Initially, helmets, for whatever sporting application, were no more than leather bon-
In auto and motorcycle racing, these designs, usually worn with goggles, were borrowed from earlier aviators and served primarily to keep the head warm and the hair in place. In the late 1800s and early 1900s, American football players and the occasional ice hockey player also wore the equivalent of a soft leather hat. Some employed a fleece or felt lining or were padded somewhat with cotton batting. The concept of a hard shell, dating back to medieval times, tacitly acknowledged that distribution of the force to the head would reduce the probability of skull fracture—now a biomechanical tenet. Or perhaps it was seen as simply a better way to deflect objects from the head. However, no hard shell appeared on these early “helmets.”

In American football, concern for head injuries dated back to the early 20th century. In 1905, for example, when helmets were not worn, there were 18 deaths and 129 serious injuries. Perhaps not surprisingly, later studies determined that most fatalities in football were due to head injury. As demands on the leather football helmet design increased, the outer leather was treated to make it hard (in a similar fashion to that developed many years prior for firefighters’ headwear). Individual hard leather pieces were usually sewn to a hard fiber material crown section. Initially, they were simply lined with felt, fleece or some other padding but a few years later, with the introduction of a rudimentary inner suspension, something of a breakthrough in football headgear design had occurred. This new device had the capacity to absorb and distribute blows to the head somewhat more effectively than the floppy leather caps previously in use. But there was still a long way to go.

It would not be until the middle of the 20th century that it was recognized that there were at least two types of sporting headgear. One dealing with the one-time life threatening blow that could occur in certain sports (e.g. auto racing), the other to repetitive impacts (as in football or hockey), neither of which could be truly met for many years. By the 1930’s the use of hard shell helmets in international and grand prix auto racing had become standard gear.

The situation was similar in motorcycle racing. The very first of the modern hard “crash” helmet shells was not constructed of molded plastic shell. Unfortunately, early production methods were not that good and cracking of the plastic shells during game play gave a bad reputation to plastic helmets for the first few years. In 1941, Riddell patented an ingenious arrangement of fabric straps designed to keep the rigid plastic shell off the wearer’s head but, far more importantly, provided a means for absorbing impacts to the shell. Sounding like a fundamental understanding of certain biomechanical principles, the patent itself states: “…a shock at any point about the surface of the helmet is not transmitted directly to the wearer’s head in the vicinity of the blow but is transmitted by slings, and thus spread over a large area of the wearer’s head.” The hard shell Riddell suspension helmet debuted in 1949 in the NFL. Other sporting applications would, in time, pick up on this design concept.

Many other football helmet manufacturers, however, took a different approach. In a patent (US 2,634,415 Turner and Harvey, 1953) the first padded hard shell football helmet was described. Claiming that “…tape or strap suspensions have been sadly inadequate to the avoidance of severe head jolts,” they proposed a resilient closed cell rubber-like foam be placed throughout the shell interior. Cavities in the liner aligned with holes in the shell were provided for ventilation. Encased in leather, this liner inside the hard, molded-plastic shell proved to be reasonably effective in dissipating impact energy and was the model for the current modern athletic helmet. However, the design was very hot and heavy and not well ventilated and as a result, the web suspension design continued to prevail for many many years—until more rigorous helmet performance specifications came along.

Meanwhile, Lombard and Roth, working in the military aviation field, had also deduced that the Riddell-like suspension system, no matter how finely tuned, wasted space between the wearer’s head and the inside of the helmet shell that could be better utilized for impact management. Filed in 1947 and issued in 1953, their patent (US 2,625,683) would alter crash helmet design in ways that have basically not changed since. Their idea was to fill, as completely as possible, the gap between the head and the shell with crushable, energy absorbing material such as polyurethane foam. Clearly, though energy absorption was improved, this design was not suited to repetitive impacts (as in football or hockey), as its performance degraded significantly with subsequent impacts.

In order that their concept might achieve
acceptance beyond the aviation community, Lombard and Roth formed Toptex Corporation in 1954. The plan was to “mass” produce motorcycle and auto racing helmets with crushable energy absorbing polyurethane liners. Importantly, at some point in time, a non-polyurethane liner material, expanded polystyrene bead foam, was selected for these helmets. This material, EPSB foam, was cheap, readily available, relatively easy to manufacture, light weight and its mechanical properties could be fine tuned, but most importantly, it crushed more or less completely upon impact—and stayed crushed. The motorcycle/auto racing helmet as we know it today was born. To this day, virtually all helmets of the “vehicular” genre (i.e. “crash” helmets) employ this very same material.

During 1954, in what would later become the preeminent helmet producer in the world, some auto racing enthusiasts began to manufacture helmets in a garage behind the Bell Auto Parts store in Southern California. The initial Bell helmet shells were hand laminated fiberglass resin composites with a thick semi-rigid-foam polyurethane liner. They were also the first to extend the pudding bowl to cover more of the head in a “jet” helmet style. Along with their extended coverage of the head, they were believed at the time to be among the most protective race helmets ever designed.

Then along came George Snively. Snively, a physician and sports car racing enthusiast, was present in 1956 when his friend William “Pete” Snell died from head injuries suffered in an auto racing accident. Subsequently he undertook a study that had never before been contemplated; a study that could only have been conducted at a medical facility—a biomechanics of head injury study that, though crude by today’s standards, had a profound impact on modern helmet design and performance. In this study Snively discussed his testing of helmets then currently available to the racing community. In what must be considered one of the most bizarre yet important experiments of its time, he had helmets placed on the head of cadavers and subjected each to a massive impact. Six cadaver/helmet experiments in all were conducted on six different brands of helmets then available. In every case but one, the helmets failed to prevent the cadaver head from sustaining what would, in a living human, be a life threatening skull fracture. The only helmet to not result in a skull fracture was the helmet being made by Lombard and Roth’s company Toptex. Though all helmets tested had a hard outer shell, this was the only one with a non-resilient EPSB foam liner and it was the one that would change the face of auto and motorcycle racing, cycling and equestrian helmet design for the next 50 years.

Together with his research activity, Snively founded the Snell Memorial Foundation, the expanded polystyrene bead (EPSB)-lined Toptex, the first of the “real” motorcycle helmets in the US (personal collection).
Today’s US DOT standard 218 for motorcycle helmets was published its first standard for “Vehicular helmet standard committee and by 1966 had established a standard. By 1961, the American Standards Association, ASA, had established a helmet standard permitting only 300Gs maximum but with no dwell times. Which of these two failure criteria provided more protection continues to be debated, and today, some 35 years later, these same criteria are still in place in modern crash helmet standards.

Motorcycle helmets took a different approach. Encouraged by the ongoing research at Wayne State University, athletic products manufacturers decided to try to implement some of the research findings to improve helmet performance. To this end, the National Operating Committee for Athletic Equipment was formed in 1969. NOCSAE designated Voigt Hodgson of the Gurdjian-Lissner Biomechanics Laboratory at Wayne State University as its chief investigator and two significant departures from contemporary helmet testing occurred. To begin with, Hodgson recognized the likely importance of headform biofidelity and with others developed a test headform to better model the dynamic response of the human head. Based upon cadaver data, the headform modeled both the geometric, inertial and frequency response characteristics of the head quite well. Originally in one size only, several sizes were subsequently developed. Like the human skull, and unlike any headforms before it, the NOCSAE headform could fracture if impacts were too severe. The second important advancement was to employ the Severity Index (Gadd, 1966) as a measure of helmet performance. The failure criterion, in keeping with Gadd’s view, was initially set to SI=1000. This turned out to be too severe for helmets being produced at the time and the criterion value was moved upward to 1500. In 1973 NOCSAE published its Standard Method of Impact Test and Performance Requirements for Football Helmets. Since about 1980, virtually every football helmet sold and used in the United States has had to meet the NOCSAE standard. The failure criterion has since been lowered to SI=1200. The introduction of the NOCSAE standard had a profound effect on head injuries in football in the US. Since its implementation, serious head injury rates dropped of the order of tenfold. Interestingly, the rate of concussions has not changed to such a great extent.

Current Developments & The Future

Recent work with football players in the National Football League has pegged the concussion threshold at a much lower value of SI than had previously been accepted. Furthermore, replication of actual incidents where players were concussed has led to the suggestion that the NOCSAE helmet test protocol could use updating. To this end NOCSAE has recently introduced improved headforms and, working with the NFL, is currently examining the manner by which its impact test methods and failure criteria might be improved.

In regard to motorcycle helmets, huge strides were made in Europe with the publication of the COST 327 report (2001). And the new ECE Reg 22-05 motorcycle helmet standard now represents the state-of-the-art in performance specifications in this area; partly because of biomechanical considerations. Importantly, though from a test repeatability perspective, contentious, the test allows the headform to freely fall without any of the usual customary constraints (guided free fall) of contemporary protocols. This, it is argued, allows the head to respond in a more human-like fashion, better permitting the implementation of human based criteria. Haldin et al (2001) have proposed an oblique impact test to address these same concerns.

Unlike many other standards (NOCSAE...
the nature of protective headgear for soccer (Smith 2005). Several years ago, the author with colleagues Shewchenko and Welbourne introduced a more general head injury assessment function, the Head Impact Power HIP. This function, which considers the maximum rate of translational and rotational energy transfer to be the controlling element in inertially induced brain injury, has been successfully used in the development of a new North American football helmet (The Riddell Revolution). HIP is also currently being employed to help quantify head injury threats in soccer (Shewchenko, et al, 2005). Still, the failure criteria for every published helmet performance standard in the world continue to be based solely on linear acceleration of a test headform.

How we will reconcile this conundrum remains to be seen. One thing is certain, helmets are better than they were 50 years ago and this is partially due to the recognition of certain basic biomechanical concepts. However, little improvement can be expected for the next 50 years until we determine ways to implement more of what little we know about the mechanisms of head injury.

This article was first published in the Proceedings of the International Council on the Biomechanics of Impact in 2005 and is the basis of a forthcoming book entitled The History, Art and Science of the Modern Sports Helmet.

The original paper, in its unedited form, together with all footnotes, will be available on MCN’s website, mcnews.com

The Author

Dr. Newman, founder and former President of Biokinetics and Associates Ltd., in Ottawa Canada, is one of the World’s experts on the design and performance of helmets and their relationship to head and neck injury mechanisms.

A former professor of mechanical engineering, he has published extensively in the field of head injury biomechanics and helmet performance and co-owns several important helmet patents.

In addition to chairing several Canadian Standards Association helmet committees for many years, he has represented Canada on various US and international bodies involved in the development of protective equipment standards. He has served as a Director of the Snell Memorial Foundation and for 10 years was a member of the Stapp Car Crash Conference Advisory Board.

His research has led to the development of better protective headgear in hockey, football, bicycling, military, bomb disposal, aircrew, firefighting, coast guard operations, industrial as well as in motorcycling. In recognition of his contributions to head protection research, he was recently named a Fellow of the Society of Automotive Engineers. Previously he had been inducted into the International Health and Safety Hall of Fame for his work in biomechanics of trauma and in 1995 was elected as a Fellow of the Association for the Advancement of Automotive Medicine.

He has provided consultation to all the major helmet producers including Arai, Bell, Riddell, Shoei and Simpson as well as to most automobile and motorcycle manufacturers.

He currently resides in Edmonton, Alberta where, between consulting engagements, he works on restoring his vintage Austin Healey and writing The History, Art and Science of the Modern Sports Helmet.